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S u m m a r y  

The Falkner-Skan equation f '" + if" + h(1 - f , 2 )  = 0 is discussed for X > 0. Two types of solutions have been 
pursued: those satisfying f(0) = f'(0) = 0, f '(oe) = 1 and those being periodic. In both cases, numerical evidence 
is given for a rich structure of multiple solutions. Branching occurs for X = 1, 2, 3 . . . . .  All solutions can be 
characterized by means of a special subset of periodic solutions. 

1 .  I n t r o d u c t i o n  

More than half a century ago Falkner and Skan [1] introduced a class of  similarity 
solutions in boundary- layer  theory, governed by the differential equation 

f ' "  + f f "  + X ( 1 - f ' 2 )  = 0 (1) 

with boundary  condit ions 

f ( 0 )  = f ' ( 0 )  = 0, f ' ( o ¢ )  = 1. (2) 

Al though since then this equation has been studied extensively, we will show that it has 
not  yet revealed all of  its secrets. 

Let us first summarize the properties of (1) + (2) which are known so far. 

- For  X < - 1  an infinite number  of  solutions exists in which f ' - - ,  1 exponentially. 
These solutions, which exhibit overshoot (i.e. f '  > 1 for some values of  the argument  
~/), emanate  f rom a giant branching point  at X = - 1, f " (0 )  = ,  1.08638; see Oskam 
and Veldman [2]. 

- For  - 1  ~< X < X* = - 0 . 1 9 8 8  no exponentially decaying solutions exist. 
- For  X* < X < 0 Hastings [3] has proved the existence and uniqueness of two solutions 

of  (1) + (2): one with f " ( 0 )  > 0, the other one with f " (0 )  < 0. 
- For  0 ~< X ~< 1 (1 )+  (2) possesses a unique solution, as shown by Coppel  [4] and 

Craven and Peletier [5]. 
- For  X > 1 the solution is unique under  the restriction 0 < f '  < 1; see, for instance, 

Ha r tman  [6]. Solutions not  satisfying this restriction have been presented by Craven 
and Peletier [7]. 
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The solutions obtained by Craven and Peletier exhibit a regular behaviour, strongly 
suggesting that for ~ > 1 a periodic solution exists as in the case )~ < - 1 [2]. The present 
paper pursues this possibility. Numerical evidence is supplied that there is even a 
multitude of periodic solutions. This is shown to  be related to a complex branching 
structure of solutions of (1)+ (2). For 1 < X ~< 2 the solutions of Craven and Peletier 
appear to be the only ones, but at X = 2 a bifurcation occurs, leading to additional 
solutions. The bifurcation process repeats itself at every next positive integer value of X. 

2. Numerical solutions of (1) + (2) 

In order to find numerical solutions of (1)+ (2), we consider (1) together with the initial 
conditions 

f (0 )  = f ' ( 0 )  = 0, f " ( 0 )  = ~" (3) 

as an initial-value problem. The results of Craven and Peletier [7] suggest that for h > 1 
multiple solutions of (1) + (2) exist with 0, 1, 2 . . . .  relative minima for f ' .  If we denote 
the respective values of f"(0)  by %, ~'1, ~2 . . . . .  their results also suggest the following 
ordering: 

~ < % < % < . . . < % < ~ < % .  (4) 

Thus, increasing f" (0)  from ~'1 to %, a solution with one minimum is deformed into a 
solution with three minima. Being intrigued by this process and keeping in mind the rich 
structure for negative values of ~, we decided to consider the case )~ > 1 in detail. As a 
start we studied the dependence of the solution of the initial-value problem (1)+ (3) on 
the value ~- of f"(0),  using an accurate numerical integration method of the extrapolation 
type as described by Bulirsch and Stoer [8]. 
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F igure  1. Behaviour  of a Fa lkner -Skan  solut ion wi th  f " ( 0 )  = • and  the integral  curves  wi th  f " ( 0 )  = • +. 
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F igure  2. Some Fa lkner -Skan  solut ions  for 7, = 4. 
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Figure 3. Three solutions from Fig. 2 in the (f, f')-plane. 
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When trying to locate solutions f of (1)+ (2), the following remarks concerning its 
derivative f '  are of importance: 

(i) at the (relative) maxima of f '  we have I f ' l  < 1; 
(ii) at the (relative) minima of f '  we have f '  < - 1; 

(iii) 1 - f '  --- c0~/-1-2x e x p ( -  ½1/2 - c1~) as ~ ~ ~ (c o > 0). 

Remark (i) follows straightforwardly by considering the sign of f '" for f "  = 0. Similarly, 
for the relative minima it follows that [ f ' [  > 1, but because of (i) and f ' ( o ¢ ) =  1, f '  can 
never exceed 1. For remark (iii) we refer to the work of Coppel [4] and Hartman [9]. From 
these remarks we see that f '  oscillates around - 1 .  Moreover, the limit f ' =  1 is 
approached from below in a fast exponential way and the numerical integration of (1) can 
be stopped as soon as f '  becomes greater than 1. 

Scanning the values of f"(0)  it became clear that a solution f of (1) + (2) and its value ~- 
of f" (0)  can be well characterized by the behaviour in the (7, f ' )-plane of the integral 
curves for adjacent values • ±. A disturbance to the one side leads to overshoot, whereas a 
disturbance to the other side leads to a new relative maximum for f ' ,  close to 1. Figure 1 
gives a typical situation, but the role of "r + and ~'- may be interchanged. 

With a shooting algorithm based upon this characterization we encountered for ?~ = 4 
the solutions given in Fig. 2. The first four solutions (a-d)  are' of the Craven and Peletier 
type, but the others are new in the sense that they possess negative relative maxima of f ' .  
The regular behaviour of the solutions d and f strongly suggests the existence of periodic 
solutions, just as in the case ?~ < - 1, c.f. [2]. We are strenghtened in this opinion when 
considering Fig. 3, where the solutions d, f and g are given in the ( f ,  f ')-plane. It looks as 
if the suggested periodic solutions of d and f are combined in the solution g, which raises 
the question of a possible classification in terms of periodic solutions. 

3. Periodic solutions of (I) for k > I 

If f(*/) satisfies (1), it is evident that also - f ( - ~ / )  is a solution of (1). Hence, looking for 
a periodic solution of (1), it is natural to consider first the possibility of antisymmetric 
periodic solutions, which were also encountered for ?~ < - 1  in [2]. No periodic solutions 



85 

f 
l 

t 

-5 

~f'  

~ ,  > f "  

Figure 4. Three periodic solutions of (1) for 2, = 4. 

exist for 0 ~< )~ ~< 1, as proved by Coppel  [4]. The existence of  a periodic solution for 
- 1 ~< )~ < 0 can easily be contradicted by integrating (1) over its period. 

To calculate antisymmetric  periodic solutions for ?~ > 1, we start with f (0)  = f " (0 )  and 
again use a shooting algorithm to determine f ' (0 )  in such  a way that f "  becomes zero in a 
next zero of  f .  This approach  turned out to be quite successful and Fig. 4 shows for )~ = 4 
three resulting periodic solutions in the ( f ,  f ' ) -p lane  and the ( f " ,  f ' ) -p lane .  We will 
denote  them by P-i, where i is the number  of  (relative) minima of  f '  for one period. With 
a similar calculation for )~ = 6 we also produced periodic solutions of type P-4 and P-5, 
but  for 1 < )~ ~< 2 only type P-1 was found. Therefore we decided to follow P-l ,  P-2 and 
P-3 with decreasing )~. A survey of  f ' (0 )  values and the corresponding periods is given in 
Table 1. These results clearly illustrate the process of  disappearing of the periodic 
solutions of  type P-i when )~ approaches i f rom above: the period grows and f ' (0 )  tends 
to 1. For  )~ ~< i type P-i has disappeared. In  Fig. 5 this process can be followed for type 
P-2 in the (4, f ' ) -p lane.  We observe a strong decrease in the ampli tude of the characteris- 
tic oscillation of f '  a round - 1 as )~ approaches 2. 

In order to catch hold of the bifurcation process described above we have tried to find 
an approximat ion to f '  + 1 in regions where f '  -- - 1 by putt ing 

f (7 / )  = - 7 / +  ,(v/)  (5) 

where c is supposed to be small and ~ has been taken such that again f ( 0 ) = f " ( 0 ) =  0, 

Table 1. The period and f'(0) for the periodic solutions P-i when ~ ~, i; i =1, 2, 3 

P-1 P-2 P-3 

X f'(0) period ~ f'(0) period ~ f'(0) period 
2 0.916911 7.03 3 0.994099 12.20 4 0.999556 16.17 
1.64 0.917696 8.30 2.64 0.994401 13.93 3.64 0.999594 18.03 
1.32 0.925404 10.62 2.32 0.995436 16.82 3.32 0.999691 20.93 
1.16 0.939754 13.60 2.16 0.996713 20.01 3.16 0.999789 23.83 
1.08 0.956901 17.75 2.08 0.997836 23.60 3.08 0.999866 26.79 
1.04 0.972467 23.77 2.04 0.998665 27.71 3.04 0.999918 29.89 
1.02 0.983916 32.56 2.02 0.999215 32.52 3.02 0.999951 33.23 
1.01 0.991167 45.25 2.01 0.999556 38.20 3.01 0.999972 36.90 

(1 1 oo) (2 1 oo) (3 1 oo) 
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Figure 5. The periodic solution P-2 for X = 16, 4 and 2.25. 

bu t  now with i f (0 )  = - 1. Af ter  subst i tu t ing (5) into (1) and  l inear iza t ion  with respect  to c 

we get 

c . . . .  no" + 2~c '  = 0. (6) 

Tak ing  c' = y ( ~ )  exp(~-7/2) yields 

y "  - (¼7 2 - 2h  - ½) y = 0. (7) 

Since c'  is even, y is even too, and  the solut ion of  (7) is given by  

y=C e x p ( -  ~ / 2 ) M ( - ; k ,  ½, ½~2), 

86 

Figure 6. Comparison between P-3 and the linearization. 
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see Abramowitz and Stegun [10]. Thus, the approximation of f '  ÷ 1 (=  c') we are looking 
for is given by 

f '  + 1 = C M ( -  ~, ½, ½,12) (8) 

where we take the constant C such that both sides are equal for ~/= 0. For ?~ = 4 and the 
periodic solution P-3 we see in Fig. 6 how well both sides of (8) match. Moreover, the 
confluent hypergeometric function M in (8) has the property that it has exactly 2n + 2 
zeroes (Erd61yi [11]), with n the positive integer satisfying n < ?~ ~< n + 1. Thus every time 

passes a positive integer i from below, the number of zeros of M increases by two. This 
is in perfect agreement with our conjecture that at the same moment a new periodic 
solution P-i is formed, following one more oscillation of M. 

4. A classification of solutions and further results 

When we consider Fig. 2 again, it seems quite natural to denote the various solutions by 
the type of the successive periodic solutions followed approximately. In this way the first 
four Falkner-Skan solutions (a-d)  are denoted by F, F-l ,  F-l-1 and F-1-1-1, respectively, 
and the solutions (e-h)  by F-2, F-2-2, F-1-2 and F-3, respectively. Especially the 
appearance of F-1-2 raises the following question: can any combination of available 
periodic types be made for a given value of ?~? In answering this question we first tried to 
calculate some other combinations. However, it will be clear that for the calculation of 
combinations of the P-i the integration has to be performed sometimes over an extremely 
large interval, especially for the combinations with relatively large values of i. Therefore a 
simple shooting method becomes impracticable. 

This difficulty can be met by using a multiple shooting method, where the integration 
interval is subdivided into a number of subintervals. Let us describe this method very 
briefly for our problem (1)+ (2) and the simple case of two subintervals [0, '11] and 
[71, 72], with 72 large enough to take f ' (71)  = 1. With starting values f ( i ) (71)=  xi, 
i =  0, 1, 2, and f " ( 0 ) =  x3 we can integrate (1) over both subintervals separately. The 
condition for continuity in '71 and the remaining boundary condition in 72 lead to four 
nonlinear equations in the x i. These equations are solved by a Newton method, where the 
Jacobian matrix can be formed by integrating related initial-value problems. For further 
details we refer to Cebeci and Keller [12]. 

It is well known that in general the convergence of Newton's method is quadratic, 
assuming that the starting values are chosen sufficiently close to the exact solution. In 
general the need for accurate starting values is a serious drawback, but here we can exploit 
the knowledge about the periodic solutions and the solutions of type F-l ,  F-2 . . . . .  
already found by a simple shooting method. The starting values can be obtained easily 
from the "prescribed" periodic solutions. Thereafter, a sufficiently large "tai l"  is attached 
where f '  = 1-  and f "  is slightly positive. With this strategy the multiple shooting method 
turned out to work quite satisfactorily and each case showed perfect quadratic conver- 
gence. For )~ = 4 some of the results are given in Table 2. 

Some care has to be taken in choosing the length of the subintervals in the multiple 
shooting process. If these intervals are taken too large, the profits of the multiple shooting 
algorithm are not fully exploited; the integration process will still be the bottleneck. If the 
subintervals are taken too small, the dimension of the problem becomes large. This 
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Table 2. Various Falkner-Skan solutions for X = 4. 

Type f"(0) Type f"(0) 

F 2.347285955749827690 F-1-1 
F-3-1 2.346603756525838409 F-l-l-3 
F-3-1-1 2.346603756525835595 F-1-1-2-1 
F-3-2 2.346603756524728496 F-1-1-2-2 
F-3-2-1 2.346603756524728495 F-1-1-2 
F-3 2.346603756524637163 F-l-l-l-1 
F-2-1 2.338567516379669706 F-1-1-1-2 
F-2-1-3 2.338567516378565330 F-l-l-1 
F-2-1-2 2.338567516365545167 F-1-2 
F-2-1-1 2.338567516194108350 F-1-2-2-1 
F-2-2 2.338567443148880241 F-1-2-2 
F-2-2-3 2.338567443148879915 F-I-2-1-1 
F-2-2-2 2.338567443148876068 F-1-2-1-2 
F-2-2-1 2.338567443148825372 F-l-2-1 
F-2-3 2.338567437592141701 F-l-3 
F-2-3-2 2.338567437592141701 F-1-3-2 
F-2-3-1 2.338567437592141700 F-l-3-1 
F-2 2.338567437120918718 F-1 

2.231902851594374559 
2.231902847881036270 
2.231902804102634407 
2.231902804102235083 
2.231902804102202213 
2.231902229118067373 
2.231902227772409051 
2.231902227661542085 
2.231655937870309033 
2.231655937856229689 
2.231655937856229560 
2.231655937685618276 
2.231655937685217852 
2.231655937685184862 
2.231637185921316231 
2.231637185921316018 
2.231637185921313430 
2.231635595381601265 

hampers the convergence of the Newton process. For ~ = 4 an interval length of 1.5-2 is 
satisfactory. 

If there are solutions F-l-2, F-1-2-1-2, F-1-2-1-2-1-2, etc., one expects that there will 
also be a periodic solution which approximately follows one period of P-1 and subse- 
quently one period of P-2. Such a periodic solution has indeed been found and will be 
denoted by P-l-2. For the calculation we us~l again the multiple shooting method, slightly 
modified because of the conditions for periodicity. Further results even suggest a similar 
classification for the periodic solutions of (1) as has been introduced for the Falkner-Skan 
solutions. Figure 7 shows as an example the periodic solution P-1-2-3 in the (f ,  f')-plane. 

] 

-Y, JLWD 
- -  

Figure 7. The periodic solution P-1-2-3 for h = 4. 
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We remark that, for example, P-1-2 and P-3 cannot be distinguished by the number of 
(relative) minima of f '  in a period. An essential difference, however, is that P-l-2 exists for 
2~ > 2, whereas P-3 exists for X > 3. 

5. Solutions for various X 

The solutions given in Table 2 have been ordered with respect to f"(0).  For F this value is 
greater than for any other solution of (1)+ (2); a proof is given in the appendix. If we 
denote the value f" (0)  of the solution F-i by T(F-i), the following orderings can be 
inferred: 

r(F-1)  < r(F-2)  < r(F-3)  < . . .  < r (F ) ,  (9) 

r (F- l -1)  >~(F-1-2)  > r (F -1 -3 )  > . . .  > r ( F - 1 ) ,  (10) 

r (F- l - l -1 )  < r(F-1-1-2) < r (F- l - l -3 )  < . . .  < r (F- l -1) .  (11) 

The general pattern appears to be that we may replace F in (9) with an F followed by an 
even number of integers, e.g. replacement of F with F-l-1 leads to (11). If we replace F in 
(9) with an F followed by an odd number of integers, the inequality signs must be 
reversed; (10) is an example. 

The results of Table 2 have been extended to other values of ~ by combining the 
multiple shooting algorithm with a continuation method. Figure 8 gives a schematic sketch 
of the bifurcation pattern in the (~, f ' (0))-plane.  The classical monotonic Falkner-Skan 
solution gives the main branch, indicated by F. For each integer value of k a bifurcation 
takes place, in which a bundle of additional solution branches separates from the main 
branch. In Fig. 8 we have indicated the limiting branches for each bundle; the distance 
between the branches is highly exaggerated. At ~ = 1 the bundle corresponding with the 
Craven and Peletier solutions emanates. The limiting branches are F-1 and F-l-1. At 
h = 2 another bundle separates from the main branch. Since now two periodic solutions 
exist, the structure inside this bundle is more complicated. It consists of solutions F-2, 
F-2-il, F-2-i1-i 2 . . . . .  with the ij ~ (1, 2}. Limiting branches are F-2 and F-2-1. 

At larger integer values of ~ a similar bifurcation process occurs along the main 
branch. Its complexity increases with the number of available periodic solutions. The 
bundle starting at X = k is bounded by the solutions F-k and F-k-l,  and consists of 
solutions F-k, F - k - i  1, F -k - i l - i  2 . . . . .  with the ij  ~ (1, 2 . . . . .  k ). 

Also inside each bundle bifurcation occurs when ~ passes an integer value. This 
bifurcation proceeds in the same way as the bifurcation of the main branch, although the 
ordering of the branches with respect to f " ( O )  can be reversed. Starting for h = 1 on F and 
following the branches, the general pattern seems to be that a solution branch F - i l - . . . - i  n 
bifurcates at its right-hand side when n is even and at its left-hand side when n is odd. 
For instance, in the Craven and Peletier bundle at ~ = 2, the solution branch F-1 gives 
birth to a bundle bounded by F-1-2 and F-1-2-1, lying above the original branch. 
Similarly, from the branch F-1-1, a bundle bounded by F-1-1-2 and F-1-1-2-1 springs off, 
lying below F-1-1. In this way the whole bifurcation process in each bundle takes place 
between its limiting branches. 

The bundles with solution branches can be followed for increasing X. For moderate 
values of X they lie close to the main branch, but eventually they bend away, pass a 
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, ~ 

turning point, and proceed in the direction of decreasing %. At the intersection of these 
bundles with the h-axis another turning point is located. Hereafter the bundle runs again 
in positive k-direction. Figure 9 indicates the location of the bundles starting at k = 1, 2 
and 3 respectively, by plotting one of their limiting branches, namely F-l ,  F-2 and F-3. 
The bundles are extremely narrow as can be inferred from Table 2. 

We also followed the periodic solutions P-l, P-2 and P-3 for increasing k, starting from 
1, 2 and 3, respectively. As in Table 1, we characterized these periodic solutions by the 
largest value of f '  in the two points where f = f "  = 0, thus starting with f '  = 1-. The 
results - after a suitable stretching - are shown in Fig. 10. The curve for P-1 tends to a 
horizontal asymptote. The curve for P-2 has a turning point for k ~ 340, where P-2 
coincides with two periods of P-1. The start of the deformation of P-2 can be followed in 

1.5 

fJ  

-0.0 

-1.5 

Figure 11. Deformation of P-2 for increasing h. 
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Fig. 11, where P-2 is given for X = 8, 16, 32 and 64. The lower half of the curve for P-2 
corresponds with the value of f '  in the other point where f =  f "  = 0. The curve for P-3 
turns back for X = 538. Thereafter it intersects the curve for P-1 and at this point P-3 
coincides with three periods of P-1. The curve has been followed for decreasing X until 

= 2 ÷, where the corresponding periodic solution is of the type P-l-2. At the end of 
Section 4 we already noticed the close relationship between P-3 and P-l-2. 

By the time this investigation was completed, a paper by Hastings and Troy [13] 
appeared on the same subject. They found the same types of periodic solutions; however, 
their conjecture that these solutions exist for all (sufficiently large) X is believed to be 
incorrect (see Fig. 10). This may be the reason why Hastings and Troy were not able to 
prove their conjecture for large X. Further, they conjectured the existence of solutions of 
(1) + (2) composed of arbitrarily ordered periodic solutions. The computations described 
in the present paper show that this is indeed very likely. 

6. Conclusions 

The Falkner-Skan equation for h > 1 gives rise to a multitude of solutions. By numerical 
means, a complicated branching structure has been unraveled, with bifurcation occurring 
at every positive integer value of h. 

An important role is played by the antisymmetric periodic solutions P-i, which are 
characterized by confluent zeros of f and f" .  They are distinguished by i, the number of 
relative minima of f '  in a period. Such a periodic solution exists from X = i up to, 
presumably, a finite value of X. 

For X > 2 more general periodic solutions have been found, which can be considered to 
be composed of arbitrary sequences of the periodic solutions P-i. 

In an analogous fashion the branches of the Falkner-Skan solutions can be classified. It 
is conjectured that these branches exist up to h = oo. Their asymptotic behaviour is 
currently under investigation. 

The Falkner-Skan equation yields an exact solution of the equations describing 
boundary-layer flow. There are more situations in fluid dynamics where chaotic solutions 
are known to exist [14]. Further study of the relatively simple Falkner-Skan equation may 
help to bring order into this chaos. 

Appendix 

LEMMA: Let f(71) denote the Falkner-Skan solution F of (1) + (2) for X > 0, then all other 
solutions gOD of (1) + (2) must satisfy g"(O) <f"(0).  

PROOF: From [4] and [5] we already know that the problem (1) + (2) has a unique solution 
for 0 ~< X ~< 1, thus we only have to consider h > 1. As f represents the unique monotonic 
solution, c.f. Hartman [6], we have for ~l > 0 :0  < f '  < 1, f "  > 0, f "  < 0. Let gOD be a 
solution of (1) + (2) with f"(0) < g"(0) and take v(n) = g(~) - f ( ~ ) ,  then 

v ( 0 )  = v ' (0)  = 0,  o" (0 )  > 0. 

Since v'(oo) = 0, there must be a point p where v' has its first (relative) maximum, hence 

v ' ( p )>O,  u " ( p ) = O ,  u" (p )~<O.  (A1) 



S u b s t i t u t i o n  of  g = f +  v in  (1) yields for 7 / = p :  

v ' " ( p )  = 2 X f ' ( p ) v ' ( p )  - f " ( p ) v ( p )  + X ( v ' ( p ) )  2. 

F r o m  f " '  < 0 it read i ly  fol lows that  

f ' ( p )  > p f " ( p ) ,  

and ,  s ince v" > 0 for 0 ~< ~ < p ,  we can  der ive  s imi lar ly  tha t  

v ( p ) < p v ' ( p ) .  

U s i n g  (A3) a n d  (A4) in  (A2) yields  

v ' "  ( p )  > (2X - 1 ) p f " ( p ) v ' ( p )  + h ( v ' (  p ) ) 2  > 0, 

wh ich  viola tes  (A1).  
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